BodeAnalyzer-IconOutline.png

Bode Analyzer

One of eleven instruments in Moku:Lab

BodeAnalyzer-IconOutline.png

Bode Analyzer

One of eleven instruments in Moku:Lab

BodeAnalyzer-TabletView.jpg

Badge-AppStore.png Badge-Python.png Badge-MATLAB.png Badge-LabVIEW.png

Wirelessly configure and monitor the magnitude and phase of your system’s transfer
function, all from an intuitive iPad interface, or with Python, MATLAB, and LabVIEW.

BodeAnalyzer-TabletView.jpg

Badge-AppStore.png Badge-Python.png
Badge-MATLAB.png Badge-LabVIEW.png

Wirelessly configure and monitor the magnitude and phase of your system’s transfer function, all from an intuitive iPad interface, or with Python, MATLAB, and LabVIEW.

Overview

Features


  • Linear or logarithmic swept sine output
  • Probe two systems simultaneously, or one system at two points
  • Math channel to add, subtract, multiply or divide response functions as they are acquired
  • Monitor the magnitude and phase on the interactive Bode plot
  • Use cursors and markers to measure exact values on the plots
  • Precisely adjust settling and averaging time to suit device under test
  • Save a calibration trace to compare systems or remove spurious cable shifts
  • Easily save data and upload to the cloud

Specifications


  • Frequency range: 10 mHz to 120 MHz
  • 50 Ω / 1 MΩ input impedance
  • Variable averaging time (1 µs - 10 s)
  • Variable settling time (1 µs - 10 s)
  • Linear/logarithmic sweep

Overview

Features


  • Linear or logarithmic swept sine output
  • Probe two systems simultaneously, or one system at two points
  • Math channel to add, subtract, multiply or divide response functions as they are acquired
  • Monitor the magnitude and phase on the interactive Bode plot
  • Use cursors and markers to measure exact values on the plots
  • Precisely adjust settling and averaging time to suit device under test
  • Save a calibration trace to compare systems or remove spurious cable shifts
  • Easily save data and upload to the cloud

Specifications


  • Frequency range: 10 mHz to 120 MHz
  • 50 Ω / 1 MΩ input impedance
  • Variable averaging time (1 µs - 10 s)
  • Variable settling time (1 µs - 10 s)
  • Linear/logarithmic sweep

F.A.Q.


  • How can I plot the ratio of Input 1 and Input 2?

    By default, each channel shows the ratio of the input to the output, In / Out. This is useful for measuring the transfer function of a device under test. The math channel allows you to plot different combinations of Ch 1 and Ch 2. If the output amplitudes of both channels are set to the same value, then viewing the math channel as Ch 1 / Ch 2 will show the ratio In 1 / In 2, since the outputs are the same.


F.A.Q.


  • How can I plot the ratio of Input 1 and Input 2?

    By default, each channel shows the ratio of the input to the output, In / Out. This is useful for measuring the transfer function of a device under test. The math channel allows you to plot different combinations of Ch 1 and Ch 2. If the output amplitudes of both channels are set to the same value, then viewing the math channel as Ch 1 / Ch 2 will show the ratio In 1 / In 2, since the outputs are the same.